
163 WASHINGTON (Wh y SCAtTLE DEPT OF CIEMISTRY F~• Va
COISISIONAL. RELAXATION OF TRANSIENT VIBRATIONAL ClERGY DIST RIBU—E TC CU)
SEP 79 D F KELLEY. L ZALOTAX . B S RABINOVITCH N0001*—75—C—0690

WICL ASSIFIED N— Oil

_  
_ _ _ _ _ _  

Ui
_

H



I ~~ ~ ~~~
_ _ _  

~~~~~~3 2  2.2

I ~ ~

Hill’ ‘~~~~~ III~U4 ~
Mu ;R(J( O~’ Y I~ESOLUT ION TEST CHART



V
I .

~ 

—

CoTTIsiónal Relaxation of Trans ent Vibrational Energy Distributions

In a Thenna l Unimo lecular System . The Variable Encounter Nethod~

1
D. F.~~elley , L.~~alotai ~~~ B. S./Rablnovltch /

~~~ Department of Chemistry , BG lO
University of Washington

A Seattle , WA 98195

Prepared for Publication In Chemical Phys ics ¶?

1 SEP ~ T3

Technica1 R~~~~t, No. NRO92-549-~P4L. U L~ L~~ L~~~ Li L:J

Contract NGOOl4-75-C-O69O~ NR092-549
// ,

/ 1  -“(7 ,- /

Y~ Sept ~~~ 1979

A’ ’~~’

OFFICE OF NAVAL RESEARCH
Department of the Navy

Code 473
LU 800 N. Quincy

Arlington, VA 2217

=
=1

Reproduction In whole or In part Is permi tted for any purpose of
the United States Government. This doc~nent has been approved for public
re lease; Its distribution Is unlimi ted. I,

/! _~~-‘

‘I //

002



— 
Unclassified

SC Gu ~~i ’Y CL. A$%LFSCATION O~ T~u$ P AGI (Is.. O.~a tsU. ,.~) __________________________________

REPORT !~nCUU~IITAYIn~ PAd~E READ INSTRUCTIONS
HEFORE COMPLETING FO~ M_

1 •E~~~~ 1 NUNS tN ~~~ GOVT *CCE$1$ON NO. $. ~ECI~~I1NT $ C A TA L OG NUMSIII

NRO92-549-TRei~ ______________________________

• t iT...1 (.14 SubSlIl.) 5. TYP( OP ~&POlT * PIN GD covi~toCollisional Relaxation of Transient Vibrational
Energy Distributions in a Thermal Unimolecular Technical
System. The Variable Encounter Method á~~i(lIPORUNG O~~~ IIIPO i~ggpU 

-

1 - L COsT~~ACT O~ OOA~ Y NUM$(~~~ 
-

0. F. Kelley, L. Zalotat and B. S. Rabinovitch N000l4-75-C-0690
MR 092-549

I. PS~~P0~ M:NG O*OANIZA?ION $AMI ANQ *oo~eU 15 P~ OG~ AN EL IMENt . PSOJECT TAIt —

4 Professor B. S. Rabinovitch ARIA I VORIC UNIT NUMSIO$

Department of Chemistry BG-lO
University of Washington
Seattle. WA 98)95 __________________________

I I .  CON TRO (. t . ING OF~ tCL N *211 AND ADDR131 ia REPOP! 0*11
Office of Naval Research, Code 743 5 S 79
Deoartment of the Navy 4
800 N. Quincy ~) WUMSER OF PAGIS

Arlington. V7~ 22217 
36

11. M~~NITG~ INO AGEsCY NAME S ADOAI$1(SS ~~It.e.i , fr ~~ C..S’.IUlll OW..) *1. SECURITY CI.A $. ~.t *10 i~~0•U

Unclassified

~$. QISTRISUYIO$ STATEMENT (.1 01. ft • 011)

This document has been approved for public release; its distribution
Is unlimited.

t l. DIITRISUTION STAYIM INT ~oS ffi. .A.N.ct ~~#*1d M $.ok 20, St 4S~~..2 *~~ ~~~I’O

IS. SUPPI.CMINTA*Y NOTES 
— -  - —

Submitted to Chemical Physics

IS C IV WORDS (C.n#S.ia. ~~~~ vire .10i~iI .c....p ~~~ à*i,ii~ ’ ~~

Cyci opropane Transients
Energy Transfer Unimolecul ar Reaction

\ High Temperatures Variable Encounter Method

\urface Vibrational Relaxation

20. As CT (C.oII.1. ,av~~io .94. 91 ..s... p .ud 9*ii9L~’ 5, bP.cS i 5.i)

he Variable Encounter Method is described In detail together with
theoretical mod&s for deconvolutlon of data. A relation is developed between
mean first passage time and 5lncubation” time. Application Is made to the
study of the transient region in vibrational acconinodatlon of cyclopropane-d2
at high temperature surfaces. Collision efficiency declines with rise of
temperature. Surface collisions are more efficient than binary gas phase
encounters. \

DD 
~~~~~~~~~ 

1473 (DI ION OP I sOv il 102001.1,1
SIN 010210 0144401 

______SICURITT CL *S$IFI CAt !ON OF YNIS P151 ~~~ 
ss

-



I

DISTRIBUT ION LI ST

Contractor University of Washington MR 092-549

Contract Number N00014-75-C-0690 Date - 
September 15, 1979

No. Copies

Office of Naval Research 10
Code 473
Arl ington, VA 22217
Attn: Dr . Richard Miller

Office of Naval Research Branch Office 1
1030 East Green Street
Pasadena, CA 91106
Attn: Dr. R. J. Marcus

Office of Naval Research Branch Office I
536 S. Clark Street
Chicago, IL 60605
Attn : Dr. J. Smith

Defense Documentation Center . 12
Bldg. 5
Cameron Station
Alexandria , VA 22314

Off ice of Naval Research Branch Office 1
495 Summer Street
Boston, MA 02210
Attn: Dr. 1. H. Peebles

Office of Naval Research Resident Representative 1
University of Washington
1107 N.E. 45, Univ. 01st. Bldg., Rm 422
Seattle, WA 98195

U. S. Naval Research Laboratory / 6
Code 2627 _________.-_____

Washington, D.C. 20375 
..

N i I .  ~~~~~~~~ LI” 
—

r i o
Naval Research Laboratory Ur. . .i 1
Code 6100
Washington, D.C. 20375

Naval Air Systems Command ‘I
Code 440
Washington, D.C. 20360 I

Attn: Dr. H. Rosenwasser
r i  

--~~~~~~~~ - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. 

—~~~~~~~~~~~--— .



I
2

No. Copies

r aval Sea Systems Command 1
SEA-033l
Washington, D.C. 20362
Attn: Mr. J. Murrin

Naval Sea Systems Comand 1
SEA-0332 I

Washington, D.C. 20362
Attn: Dr. A. Amster

Naval Surface Weapons Center 1
Research and Technology Dept. -WR
Silver Spring, MD 20910

Naval Weapons Center ‘I
Research Department
Code 60
China Lake, CA 93555

Naval Weapons Center 3
Code 608
China Lake, CA 93555
Attn: Ronald L. Derr

Air Force Office of Scientific Research 1
Directorate of Aerospace Sciences
Boiling Air Force Base
Washington, D.C. 20332

Air Force Office of Scientific Research 1
Directorate of Chemical Sciences
Boiling Air Force Base
Washington, D.C. 20332

Air Force Office of ScientifIc Research 1
Directorate of Physics
Boiling Air Force Base
Washington, D.C. 20332

U.S. Army Research Office 1
Chemistry Division
P.O. Box 12211
Research Triangle Park, N.C. 27709

U.S. Army Research Office . ‘I
Physics Division
P.O. Box 12211
Research Triangle Park, N.C. 27709

Professor S.N.B. Murthy 5
Technical Director, Project SQID
Purdue University



_ _
~~~~~~r

Collisional Relaxation of Transient Vibrationa l Energy Distributions

in a Thermal Unimolecular System.a The Var iable Encoun ter Method .

D. F. Kelley, i. zaiotai b and B. S. Rabinovitch

Department of Chemi stry BG-lO , University of Washington

Sea ttle , WA 98195

Abstract

A method has been developed , called the Variable Encounter Method ,

for the study of the relaxation of an initial vibrationa lly cold ensemble

of mol ecules into a vibrationally hot distribution by a known and variable

number of successive collisions wi th a hot wall. The theory of the experi-

ment is presented. The system studied was the isomerization of 1 ,l ,cyclo-

propane-d2 with a fused quartz wall temperature of 800 K to 1175K , and

average number of coll isions from 2.3 to 22.3. Various modified gaussian

and exponential models of energy transfer were found to give agreement with

the data. The average down-step size was found to decline from ~ 3500 cm~

at the lowest temperature to “
~~ 2500 cm~ at the highest on the basis of a

gaussian model . A mathematical analysis of the relation between mean first

passage times and incubation times is given. Incubation times increase

from ‘s.. 7 to ‘t. 12 collisions wi th increasing temperature. Transient population

distributions and the sequential reaction probabilities as a function of

coll is ion num ber are calcula ted .

-a - - - ~~~~~~~~~~~~~~~~~~~~~ 
-
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I. INTRODUCTION

There have been no previous measurements of the dynamics of the collisional

relaxation of vibrationally excited polyatomic molecules. If an ensemble of

reactant molecules embedded in a hot bath gas starts out in a “cold” distribu-

tion , whether Bol tzmann or no t , It will relax by collisions with the bath gas

molecul es to a steady—state “hot” distribution . The study of reaction proba-

bilities associated wi th the intermediate distributions can provide insights

into the form of the energy transfer distribution function over the entire

range of energies from 0 to E , the reaction threshold . One may thus determine

the entire matrix of collision energy transfer probabilities P - The proba-

bility matrix also appears in expressions for the mean first passage time ,

tfpl of molecules with respect to an absorbing barrier , as given by Kim 1 and

Widom .2 In the trivial case of a constant temperature, steady-state, low

pressure, unimolecular system, tfp = 1/k0, where k0 is the low pressure rate

constant.

Formal theoretical treatments of the transient in vibrational relaxation

have been gi ven for spec ial assume d form s of p~3’4 Usual treatments have con-

sidered the relaxation to be a continuous rather than discrete process. This

is valid for the case of a fixed time interval between collisions only if the

relaxation time is long compared to the time between collisions. This condition

is not met for a reasonably strong collider. A general treatment then requires

that the relaxation process be formulated In terms of difference rather than

differential equations. The resultant difference equations , which are not tract-

able by any analytical technique , mus t be solve d nume r i cal ly .

A very simple method of study of the collision-by-collision relaxation of

vibrational energy, i.e., of the relaxation transients , has been develo ped .5’6

The collisions are wi th a wall which , In analogy with experimenta l results on

homologous series of bath molecules of increasing size ,
7 and on the basis of a
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quasi-statistical model ,8’9 is anticipated to be at least as efficient as any gas-

eous bath molecule. In this technique a molecule experiences a large number of

collisions with a cold wall of known variable tempera ture and is brought into

equilibrium with it before having a series of collisions (an encounter) with

the hot walls of a reactor. By varying the geometry of the reactor, one can

change the average number (and number distribution) of successive hot collisions ,

hence the name , Variable Encounter Method (VEM). Escape from the reactor, usually

wi thout reaction , leads to re-equilibration on the cold wall before re-entry

into the hot reactor. The amount of reaction that occurs after a given number

of encounters may be measured.

The reaction chosen fcr this study is thE- ring opening isomerization

of l ,l-cyclopropane-d2 to propene. This process has a critical threshold of

about 64 kcal and a pre-exponential factor of ‘~. l.3xl015 sec~~. It has been

studied in the homogeneous steady state case ,1° and a preliminary account of VEM

F work has been reported.6 Light cyclopropane has also been used in VEM work to be

reported.5 This system was chosen not only because homogeneous studies of

energy transfer at comparable temperatures with inert bath gases already

exist , but also because this reaction is well known to be notably free

from complicating surface and wall seasoning effects. 

. .~ ..
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II.  EXPERIMENTA L

The apparatus consisted of a 5-liter fused quartz spherical flask which

had several quartz cylindrical finger reactors of various dimensions blown onto

the surface. Each finger , which could be heated separately, consisted of a

cylindHcal region of length L , terminated by a hemisphere of radius r

which varied from 2.1 to 2.5 cm for different reactors. The ratios of

£/r for the reactors used are given in Table I. The entrance area to a

reac tor was ‘~ 1% of the total area of the flask. The reactor could be enclosed

in a stainless steel heater block which was heated by clamshell Kanthal ceramic

heaters. Fine silica sand was used as a thermal conduction medium in the approxi-

mately 2-3 mm gap between the quartz reactor and the steel block. Temperature

measurements were made wi th several chromel-alume l thermocouples glued onto the

outside of the reactor finger. Typical reactor temperatures were 750K to 1150K ,

while flask temperatures were 350K to 400K.

Some tempera ture gra di ents over the reac tor surface , particularly near

the attachment to the cold flask , were unavo idable. This problem was sub-

stantially reduced by having additional heaters embedded in the top of steel

block. In this way, the reactor temperature could be maintained constant to

± 50 within a distance of “.. 0.7 cm from the top of the reactor where the

temperature commenced a more abrupt decline. The tempera ture pro fi le over

the lon ger reactors (w here ra di ati on losses were not so great) could be main-

tam ed constant within 2°-3°. Thus , an uncer ta in area of reduced tempera ture

amounted to “.. 10-15% for the smallest reactor and was negligible for the longer
reactors. Cal culation s indicate that temperature gradients through the quartz

wall (‘k. 2 mm thick) were completely negligible. 
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A pre-exposure of the oxidized quartz surface to the substrate , at a pressure

of about 5x lO 4 torr deposited a thin film of “polycyclopropane ” on the surface

and provided reproducible results for the measured rates of isomerization. The

seasoning time required to achieve reproducible results was somewhat longer than

H in conven tiona l sta ti c systems ( i .e. , hours and days , rather than minutes or

hours).  Pr ior to a run , the system was pumped down to < l0 6 torr , the

reactant was introduced at a pressure usually equal to l-2xl0 4 torr , although

experiments were made over the range 0.5-9.0 x lO~~ torr. Run times varied

from ‘~ 10 minutes to several hours with the amount of reaction being 1-50%.

Analysis was by gas chromatography with a squalane SCOT column and a

flame ionization detector.

_ _ _ _
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I I I .  CALCULAT IONAL TECHNIQ UE

1. Calculation of “number of collisions ” distribution per encounter

There is a distribution n of the number of collisions made by a

molecule with the wall after entering the reactor (an encounter). The distri-

bution n was changed by changing the L/r ra ..io; in this work , L/r varied from

0.17 to 10. This distribution was obtained by a stochastic calculat ion of the

acutal trajectories of single molecules. In the calculation of n , it was

assumed that the surface is rough on the mol ecular l evel , so that a cosine law

distribution of angular reflection is valid after each collision regardless of

incident trajectory. (If this assumption were replaced by one of specular

reflection , it would result in only a modest change in n . The details of this

calculation are now given .

Molecules which cross the boundary plane separating the reactor finger from

the bulb d.~ so with an angular distribution function

P(O) = 2 sine cose , ( 1)

where P(e) is defined as the normalized probability of a molecule trajectory

making an angle e wit1~ respect to the normal to the plane. This cosine law

distribution is the general result for effusive molecules. Actual ly, at typical

operating pressure , the mean free path is comparable to the dimensions of the

spherical flask. However, the same result is obtained by integrating over the

surface of the flask (see App. A).

The z axis is chosen along the axis of the cylinder; z = 0 defines the

plane separating the hemispherical and cylindrical parts of the reactor finger ,

wi th z positive in the hemisphere. The x0 and y0 coordinates on the z0 = -&/r

plane (separating the cylinder from the large flask) are chosen randomly for

Li -.—, —~~-——— .-~~~~~~~~~--- ~~~~~~~~~~~~~~~~~~
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Ii any one molecule, such that x0
2 + y0

2 
~ 1, in units of r. The initial trajec-

tory of the molecule is defined by x0 and y0, by 0 , chosen randomly to conform

to eq. 1, and by an azimuthal angle • , chosen randomly between 0 and 2-n. This

trajectory may be written as

(x( t ) ,y(t ) , z ( t ) )  = (x 0 ,y0,z0 ) + t ( x ’ ,y ’ ,z ’ ) (2 )

where t is a (continuous) parameter , and x ’ sine cost , y ’ = sinO sine,

= coso . This trajectory may intersect the reactor in either the cylinder

or the hemisphere ; the two cases are handled separately. In either case , one

calculates the first impact coordinates (x1,y1,z1 ). To obtain the new set of

coor di na tes (x ”,y” ,z”), which define the next trajectory analogous to eq. (2),

one first defines a transformation such that ,

fl\ fX l\
(0 )= T (Y 1 J  ;

• \o/

the new coordinates are then given by,

/x”\ fi-coso
I 1 — l I -

~~
y j T  s~nO sin~ ,

\ z ”/ \s ine coss

where 8 and $ are chosen in the same manner as for the initial trajectory.

For the case of the impact on the hemisphere , the matrix representation of

I is given by a product of rotations ,

/ cos~p o sing~ coso sinci o\
I =( 0 1 0 -sincz cosci 0 ) ;

\_s inq 0 cos~p 0 0 1 /

= sin 1 (z 1); a = tan~~(y 1/x 1 ). For impact on the cylinder , T is a product

of a rotation about the 2 axis and a translation . The next impact point is

found , with consideration , also , of the possibility of escape from the finger. 

~
- .  .~— ,--.- ._s_ - .-~ —S.. 

~~~~~~~~~~~~~~~~~~~~~~~~~~ .. - — — —  .. • -------5---- . .-•-- ---- — —
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This process is repeated until the mol ecule escapes. In this way , the distri-

bution n is determined by cal culating many trajectories (1000-5000 , practise).

An average inter-collision free flight distance is also obtained .

From n , it is useful to define a correlation table for each reactor ,

c. = ~ n~/ ~ 
n~

~ i=j+l i=j

C
3 

is defined as the probability that a molecule will have at least j+l colli-

sions given that it has j, i.e., the probabilit y that a remaining molecule will

not escape after the jth collision (Table I). The average number of collisions per

encounter, m , is recovered from the correlation table by the expression :

fj-l \ f
in = ~ j ( ii C

1) ~
i - C.

j= l \i=l 3

After a few collisions , the molecule “forgets” the initial conditions and the

correlation table asymptotically approaches a constant. The number of colli-

sions required to reach this limit , within statistical fluctuations introduced

by the stochastic nature of the calculation , var ies from 0, for the shortest

reac tor , to about 15 , for the longest.

2. Simulation of the “collision ” process. Models for energy transfer

A normalized Boltzmann population vector N , characteristic of the

flask temperature , is constructed to represent the molecules that enter the

reactor. To simulate a collision , this vector is operated on by the probability

matrix. After each wall collision , the population of each molecular energy level

changes until an equilibrium distribution (or steady state if reaction is

considered ) is realized . The population of the ith level after collision ,

is given by

N 1
’ = 

~L P1~N~

_ _ _  -——•-
~~
-—•———- —-—-~~~~~~--—~~~~~~~~~
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where N~ is the population of the jth level before the collision , and p~ is

the probability per collision of a transiti on from the jth level to the ith

level . This equation may be written in matrix form N ’ = P N - Since no

change takes place after an equilibrium distri bution of molecules is established ,

(3)

The following constraints thus apply to the P matrix ,

= (g 1/g~)exp [-(E1 —E~)/RT]

~~~ 

= 1

where g1 is the degeneracy of the ith level.

Since there are , of course , far too many levels to permit their enumera-

tion , the levels are grouped together , usually in “grains ” of 100 cm~~.

If we now specify the form (model) of the down transitions , this will completely

specify the matrix P - Further details of the construction of this matrix are

given in ref. (11). In the calculati ons two different models for the proba-

bility of a given down transition , ~E , were used :

exponential: P
~E 

= A exp(-AE/<t~E>) ; 0 � t~E � 9000 cm~

= 0 ; AE > 9O00 cm~
gaussian: 

~~E 
= A ’exP [_ (

~
E_ tiEmp )

2/2o2 I ; 0 ~ t~E ~ 9000 cm~
= 0 ; t~E>90O0 ;

where the limitation t~E < 9000 cm ’ is a practical computational feature to limit

the total size of the matrix to tractable dimensions; A and A ’ are normalization

constants which also depend on the up transitions ; <1~E> , ~~~ (mp signifies most

probable), and a are parameters of the model . We note that on the exponential

model , if <tIE> << 9000 then the effective size of the average down transition ~~E
’> 

~~~~ .,-- ~~~~~~ ---- ------ -- --~~~ - , - - . - -•-- -~~-- . - - -,
~~~~-
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• is simply <oE> . For the gaussian model , If a << AEmp then this effectively becomes

a stepladder model and <AE ’> = ~
Emp ; if a 

~ 
t
~
Emp then there is a fairly large

probability for elastic or near-elastic transitions , and this form begins to resemble

a poisson model .

In the case of the exponential model , <SE> (or 
~
Emp in the case of the gaussian)

was also allowed to vary with initial energy in some calculatio ns. This dependence

was given by <~E> = ci + 8Ex, with the same expression for ~~~~ 
where a, ~~ , and x

are adjustable parameters. Most thoroughly studied were the cases where B = 0, cx

adjustable (a “flat” model), and a = 500, ~ adjustable , x = 1 (a “linea r” model).

(a is not chosen to be zero in the linear model to avoid a singularity in the con-

struction of the matrix). In all cases , down transitions larger than the initial

energy were treated as elastic. The probab ility matrices so constructed conform to

eqs. 3 and 4.

In the limit of a strong collid er , one expects a Boltzmann distribution to

result from every energy level of the initial distribution ,in one collision. To

• transform the molecules ini tially at high energy into a Boltzmann distribution

requires a larger down step than is required for molecules initially at lower

energy . Thus ,linear models have some pretension to greater physical content

than do flat models.

3. Simulation of the entire encounter process

• Between successive wall collisions , say the jth and j+lth , the population

vector must be attenuated for loss due to reaction and escape. The ith element

in the vector is modified by

N1 = C
3

e N 1

where C
3 

is the jth element in the correlation table; k. Is the microscopic RRKM

rate constant at energy , E 1 ; and -r is the average intercollision time obtained 

—~~~~~~~~~~~ - .-• - - --~~~~~~~~~ •- •-- - - -  - --.-—- —-—



from the average intercollision distance, assuming translational velocity

characteristic of surface temperature . The vibrational parameters used in

the RRKM calculation of k
~ 

as a function of energy are given in App. B.

This collision-attenuation process is repeated until the vector N1 i. 0 for

all 1 , or until some extrapolation procedure may be used (see App . C). The

amount of reaction after each collision is then

— k- i
• P.’ 

~ 
N
~

[C
3
(l_e 

~ 
)+ (1 — C

3
)(l—e 1

where -r ’ is the average flight time before a gas-gas or cold wall collis ion

after a molecule leaves the reactor finger , both treated on a fixed gap basis.

In this system , the effective pressure is sufficiently low so as to make the

• ca l cula tion of P~’ insensitive to the fixed gap approximation , or to any

reasonable error in the calculation of the k1 . The average probabilit y of

• reaction per collision is given by 
~~

(m) = ) P /m.
3
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V. Results and Discussion

1. P
~

(m) as a function of m and temperature.

Figure 1 presents the experimental average probability of reaction

per c o l l i s i o n  
~c (m) versus temperature for the five reactors . Least-squares

quadratic fits are shown ; the corresponding Arrhenius plots are given in Fig 2.

Values of the observed activation energies are summarized in Table II. If the

wall were a strong collider , there would be no transien t, and all 
~c
(m) curves

would coincide. (Related behavior in strong collider low—pressure therma l uni-

molecular theory is that the rate of reaction of substrate embedded in a bath

gas at temperature I is independent of the initial energy distribution of sub-

strate molecules below the critical threshold E0.) Figure 3 shows the least

squares fit curves and comparison with several calculated curves. In all cases ,

was adjusted to fit the m = 2.3 curve , at tempera tures where suc h data
was available.

Several features of the calculated curves reveal themselves :

a) The calculated value of Vc(m) is a more sensitive function of <n.E
’> for

• the smaller reactors. This is the reason why <SE ’> was in all cases adjusted

to fit the data from the in 2.3 reactor where available. (It should be kept

in mind , however , that this reactor is probably the one most susceptible to

• exper imen tal error , i.e., temperature measurement and gradients over the surface.)
• b) For small m , i.e., the case for the first few collisions when relatively

more of the molecules are at low energy , the exponential model Is more efficient.

This is due to its relatively greater probability of very large up jumps; this ,

• 
-

~ in turn , permits a larger contribution to reaction after only a few colli sions

than do the gaussian distributions so that a relativel y smaller value of <AE’

is required in order to fit the in = 2.3 data. For large m , by contrast , more

mo l ecu les have move d up to higher ener gi es near E0 (Figs. 4-6) and gaussian

_  

•
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• models give larger values of P
~

(m) than do exponential models; the reason for

this is the high probability of near-elastic collisions associated wi th the

• exponential model. Similar effects may also be seen (Fig. 3) upon comparison

of the two gaussian models characterized by different a where the one with

larger , a has properties more closely related to an exponential distribution.

Linear models give higher values of P
~

(m) than

do the corresponding flat models for large m reactors. The reason for this is

that the linea r model has a lower <~E
’> at low energies (Figs . 4-6) and a smaller

probability of effecting transitions from these to energies above E0 (so tha t a

larger va l ue of <z~E
’> is required , to fit the data for

the in = 2.3 reactor). For large m , the hi gher <SE ’> associated wi th the linear

model at higher energies enhances the reaction probabilit y compared to the flat

model. The two effects mentioned above produce the result tha t the linea r

exponential and flat gaussian (a = 0.7 z
~
Emp ) curves are virtually coincidental.

• As can be seen from Figure 3 , three different models all give adequate

(within experimental error) fit to the data . The best fit seems to be obtained

• with the flat gaussian (a = 0.7 t
~
Emp ) model and the linear exponential model.

• The flat gaussian models with a = 0.35 give poorer fit and are somewhat

above the experimental curves. The linear gaussian models (not shown) lie

slightly above the corresponding flat models , especially at higher temperature .

c) Regardless of the model , two findings emerge: i) <ti > drops significantly

wi th increasing temperature; and ii) <~E
’> for wall collisions is greater

than <AE> for gas-gas collisions (see Table III). This drop of <ti> with

temperature is the reason why the Pc(m) curves separate more at higher 
tempera-

tures. At b~er tempera tures ,one loses resolution between the models as they all

approach closer to the strong collider behavior.
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2. Sequential reaction probabilities and population distributions

The form of V
~

(m) may be written as

j-l
= ) P(j) 

~~ 
C1 ( l— P( i ) )• 3= 1

where C1 is the Ith entry in the correlation table; thus the continued product

represents the fraction of reactant molecules left after j -l collisions ; P( i)

is the sequential reaction probability , i.e., the probability of

reaction after the jth wall collision made by a molecule. Plots of P(j) for

various models are given in Fig. 7. The smaller m reactors weight the small

j values of theP(j) more than do the larger m reactors. Thus , additional expla-

nations to the effects discussed in the previous section may be seen in terms

• of these plots. The reason tha t the in = 2.3 reactor is much more sensitive to

changes in <LIE ’> than the larger in reactors is due to the fact that P(j) is

much more sensitive to changes in <~E
’> at small j than at large j. That is ,

the rate of relaxation is much more sensitive to changes in <~E
’> than is the

value to which it relaxes. This has been found to be true for all models.

The relative and absolute population distributions , which formed some

basis for the discussion in the previous section , are shown in Figs. 4-6.

Examination of these figures shows that the population distribution is very

significantly altered after one collision . As a consequence , for these fairly

stron g coll i s ions , the reaction rate should be quasi-Independent of Input

distribution (flask temperature). This was found to be the case experimentally

when the flask temperature was raised by 100° without effect.

It is also clear from these distributions that the average energy approaches

Its steady state value rather rapidly. This is due , In part , to the fact that

there i s a very lar ge avera ge upstep a t low ener gi es. The lar ge upstep i s a

result of detailed balance at low energy levels where the densities of molecular

~~~~~~~
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states change very rapidly with energy. A related conclusion is that the
• “temperature ” , as determined by the bulk of the population distribution ,

relaxes much more quickly than does the population around E0, I.e., than does

the reaction rate. In the case of the gaussian model (a = 0.7 
~

Emp ) at high

temperature , this upstep is so large that the value of Emp after one collision

overshoots the steady state value a little (Fig. 4). Despite the fact that

this gaussian model works well , we question how physically reasonable this

result can be. Indeed ,asa was made smaller , other non-physical calculational

results were obtained at l ower energies with the gaussian models. For

o = 0.17 AEmp~ 
P(j) ceased to be a monotoni c function of j. For the present

system, in which the energy range of interest varies from zero upward , a simple
step ladder model is quite unsatisfactory . This is in contrast to chemical
activation systems, where only energies around , or above , E0 play an important
role. A variety of additional population distributions for all models discussed
have been calculated and may be found in ref. 6b.

The relative decline in the Arrhenius activation energy wi th decrease in
m (Table II) illustrates the relative effect of increasing population depletion ,
at higher energies , with rise of temperature in the transient regime .

3. Mean first passage time and the “incubation ” time
- . 1

The first mean passage time , tfp~ as developed by Kim and Widom

gives the average amount of time required for a molecule to attain an energy

equal to or greater than E0 as

tfp = t p(t) dt ; (5)

~~~~~ m & I j
where p(t) is the,~probabi lity that a molecule will cross E0, for the first

time , at time ~ is a molecular property and is independent of m.

Clearly, tfp is a well-defined quantity at all pressures but is most simply

related to the actual rate of reaction in the low pressure limit of a uni-

molecular system. If the system is at low pressure , p(t) is the probability

of reaction at time t, which is the case we now consider and to which our

system approximates .
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Equation 5 may be written as a sum

i-i
tf = }

~ 
jP(j) IT ( 1— P C i) )

~ j =1 1=0

where time is measured in units of Col11S10n
~A, and the continued product is

the fraction of unreacted molecules after j-1 collisions , c~~~~ £t ;~ UM;ty

We define an “incubation ” time in terms of mean fi rst passage times ,

~-
ss

inc fp fp

where is the steady state mean first passage time , and tfp is the mean

first passage t ime for the case of transients. It is shown in Appendix D that

= lim (j - ~ P(i)/P) + O(jt2p) (6)
j-’-°~ 1=0

where P is P(~), and is a characteristic relaxation time for the system ,

and P(jt) ~ 0.6P. In most cases , the second term of eq. 6 is small; in

the present case, it is ~ l0~~ - l0~ of the first. So for this

case , we may write
j — l

= u r n  (j — ~ (P(i)/P)) (7)
1=0

Dove and Troe 12 define an incubation time in shock systems by the

equation

N(t)/N(o) = exp[_P(o0)(t_T
~~c

)) (8)

where N ( t ) is the concen tra ti on of reac tan t at time t, and where eq . (8)

is to be evaluated at sufficiently large t so that all transients have

disappeared . It is shown in Appendix D that t
~~c 

is simply the special

case -r~~ (eq. 7). Calcula ted values for r r~ 
are given In Table IV. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . .•—•- --•—--• -- - “~~~~~ .- - _
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Conclusions

For the temperatures studied In this system , relaxation approaches the

steady state in a small number of collisons “. 10-20 (Fig. 4) with correspond-

ing Incubation times of 7-13 collisions (Table IV). This accounts for the

finding of steady state behavior in low pressure pyrolysis studies 14 where

in ~ 80-100.

Adequate agreement with the data is obtained with flat exponential ,

linear exponential , and flat gaussian (a =0
~
7timp ) models. The best agree-

ment is with linea r exponential and flat gaussian models whose calculated

P
~
(m) curves are essentially indisting uishable. The flat gaussian (a 

~
O
~
3S
~
Emp )

linear gaussian and stepladder models do not give adequate agreement.

Wall collisions are more efficient than gas phase collisions; a quartz

surface seasoned with a film of “polycyclopropane ” is characterized by down

step sizes of “-i 3800 and 2950 cm~ (flat gaussian model , Table III) at 800K

and 975K, respectively. These compare with lesser values of ‘~ 3300 and

1900 cm~ deduced previously on a stepladder model for neat cyclopropane-d 2
gas phase collisions at the same temperatures (note these va l ues would decline

somewhat on a gaussian model basis).

The data of this study also support the previous finding 10 that , in the

temperature range investigated , energy transfer collisional efficiency declines

at higher temperatures In polyatomic molecule systems . 

•~~~~~~~~~~~~~~
_

~~~~~~~ ~~~-—~~~~~~ -
- .

~~~~~~~ 
• - • • • -- ~~~~

--
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Table I. Correlation Tables , C~, for Various Reactors

L/r 0.17 0.46 1.45 4.0 10.0

2.3 2.9 5.0 10.5 22.3
1 0.566 0.659 0.750 0.755 0.759

2 
- 

.566 .660 .788 .829 .833

3 .661 .800 .882 .889

4 .661 .809 .901 .908

5 .815 .915 .922

6 .819 .923 .933

7 .822 .928 .942
8 .824 .930 .950

9 .824 .931 .958

10 .931 .963

11 : .968

12 .972
13 .975
14 .978

15 .979

16 .980
17
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Table I I .  Apparent Arr hen ius Act iva tion Ene rgies

m
2.3 2~~ 5.0 10.5 22~3

Ea ( kcal mole~~) not defined 35.5 42.5 48 50

Table II!. Ii Values for Various Models (cm~~)

T (g() 
_ _ _ _  _ _ _

Model 8251 900 950 1025 1100 1150

flat expon- <1~E> “.10000 4300 4000 3000 2550 2300
ential <AE ’> ‘~.

. 6500 3035 2940 2685 2280 2115

linear ~xpo- <LIE> ‘~..22000 6900 5890 4765 3870 3420
nential ’

‘s.. 7800 3500 3400 3160 2900 2720

B “~ 1.0 0.285 0.24 0.19 0.15 0.13

flat gaussian 
~
Emp 3500 3200 3100 2930 2700 2530

mp

flat gaussian 1~E 3200 2800 2700 2540 2330 2175
a=0.7 Iimp 

<~~~~
‘ > 3500 3100 2990 2810 2580 2410

1 ti’s at this temperature were selected to fit m = 10.5 curve since data for

m = 2. 3 was not ava i la ble. A l so , for ex ponen ti al calcula ti ons , the maximum

t~E (matrix truncation ) is chosen to be 18,000 cm~ and the grain size to be

200 cm 1; otherwi se the customary 9,000 cm 1 and 100 cm~ were used.

2 t~E values given at the level of energy , E0
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Table IV. Incubation times, i~ (number of collisions)Inc

Model 900K 1150K

flat gaussian (O=O•7
~
Emp ) 6.5 10.7

• flat exponential 7.4 12.3

linear exponential 8.0 13.3



19

Appendix A. Derivation of Angular Distribution Function for Entry in the Reactor

Consider a spherical polar coordinate system (r,8,4) centered in the

large flask. The surface separating the reactor finger from the flask (which

for this purpose is taken to be a differentially small plane of area A) is at

the pOint 8 = 0; the radius is normali zed to unity . We examine the low pressure

case where gas-gas collisions may be ignored and derive the angular distribution

of molecules hitting A assuming a cosine law distribution of molecules coming

off the surface of the flask.

Now consider molecules that leave the sphere from the angular ring 0 to

o + dO and hit A. This ring has area 2irsinO do. The angle between A and the

origin of the coordinate system as seen from any point on the ring at 6 is

given by
= (i~-0)/2 (Al)

The fraction of molecules that leave this ring and hit A is

df = 2cos~p d~/2-ir (A2)

where dci is the solid angle subtended by A. (Note that if dc2 is set equal

• to the “volume element” 2-irsin~p diP the n df = 1 so eq. A2 is normalized.)
2For the geometry under consideration , dc2 Acosip/r , where r is the

distance between the ring and A , and r = sin8/siniji , so that

2
df = 

~~
- cos2i~ 

SIn iP
sin 0

This fraction , multiplied by the area of the ring and divided by A , give~
the fraction of molecules incident between ip and ‘P + di~,

P(ip)dip = 1 cos2’P
2
sin 2* (2it sinG ~~~~

- dip)
~ sin 0
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Using eq. Al, this simplified to,

P(ip)dip = 2 cosip sinip dip

which is the cosine distribution with the appropriate volume element , as

desired. Although this distribution was derived assuming A to be infinites ma~,

it holds approximately for finite A , provided A is sufficiently small so that

the element of spherical surface of the flask may be approximated as a plane

on A.
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Appendix B. Vibrational Frequencies for RRKJI Calculations (cm~~).

1 ,1-Cyclopropane-d 2 molecule:

3100, 3080, 3040, 3020, 2330, 2210, 1480, 1350, 1180, 1130 , 1110 (2).

1070, 1030, 1020, 980, 850, 810, 770, 620, 590.

Activa ted complex:

3020 (4), 2200 (2), 1440, 1400, 1050, 1200, 980 (2), 930, 920, 880, 750,

620, 600, 560, 460.
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Appendix C. Extrapolation Method

The total probability of reaction per encounter may be written as

/j-l
‘~enc 

= m
~c

(m) = 

j~l 
P(i) I~~ 0

C
~
(1_P(i))) (Cl )

where C. is the ith element in the correlation table (C = 1);
j-1 ~ 0

ii C~(1_P(i)) is the fraction of mo l ecules that have at least j collisions.
i =0
P(i) is the sequential reaction probabilit y .

P(j) is a monotonica lly increasing function of j that asymptotically

approaches a limiting value , P(co). For large enough j ,  called j~ the

approach to P(oo) can be described by the difference equation ,

k
P(k+j*) = P(k+j*~l) [1 

+ R~*(~J_)
] 

, (C2)

where R~* and R~* 1 are defined by the fol l owing equations

= p (j* 2) (1 +

and , similarly,

p (j*) = p (j*_l) (l + R~*)

One does the iterative simulation up to f, calculates R~* 1 an d R~* , and

then uses the extra polated values of P(j) in CI. It is found that eq. C2

worksquite well if one chooses j~ such that ~~ ~ 0.01. Thi s corres pon ds

in the present study to a j~ of about 15 to 30. We note also that eq. C2.

implies a simple exponential relaxation to P(oo) when Rk+j* << 1.

L~4
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~ppendix D. Incubat on Time From First Mean Passage Time.

The incubation time is defined as the difference of mean first passage

times with and without the trans ient ,

—
~~~~~tinc fp fp

For time measured in units of collisions ,

i-i
= ~ jP(j) n (l-P(i)) — 

~ jP(l-P)~ , (Dl)
j=l i=o j=l

where P is P(oo).

These sums may be performed directly; however , they converge very slowly

so that this becomes computationally undesirable. The following technique

may be used to approximate the sum to any desired level of accuracy. We

define j’ such that P(j’) has virtually converged on P and , recognizing that

the second term contains a binomial expansion of l/P2, we rewrite eq. Dl as

j-l • .. j’— l
= ~ jP(j) II (l-P(i)) + P ~ j(l-P)3 3  Ii (1-P(i)) - (1-P)/P. (D2)nc j=l 1=0 j=j’+l 1=0

We note that t~~ 
= (1-P)/P 1/P (where t~~ is not exactly 1/P because an

integra l was replaced by a discrete sum). Adding and subtracting to the second

term of eq. D2,

~-1= ~ jP(j) ii (l—P( i)) + P 11 (1—P(i))(l—P) 3 I (l— P) ~ j(l—P)
3

nc j =l i=~ 1=0 j =l

— 
~~ j(l— P)3 — ( l— P) / P ,

j=l J
or 

~ r j-1 f~’ -~ .1
tinc 

= ~ j~ P ( j )  n (l-P(i))- P( n (l_P(i)))(l_P)1 i_Ij 1  L I:0 \1 0 

(l-P( 1)~ 
- ( l-P )/ P . (03 )
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Of course , eq. D3 must be exactly equal to eq. Dl If one lets j’ ..- 
~~~

(so P(j’) = P exactly), but is ca l cula t lonally tractable because the sum

converges for rela tively small va l ues of j’;(in the first term of eq. D3 ,

terms In the sum app roac h zero , an d in the second term, factors in the product

approach unity , as j’ • ~ ; evaluation of eq. Dl woul d requi re l0~ to 10
8 terms

whereas eq. D3 requires only 30 to 60). Equation 03 may be simplified further

by expanding in a power series in P (all P(j) are considered to be of order P) .

After some manipulation with use of the binomial expansion of (l-P)~~ and

the relation,
j ’—l — j ’ — l ~-j ’—l i—i

ii (l-P(i)) = 1 — 
~ P ( i )  + ~ P ( i )  ~ P( i ’ )  +

1=0 i o  1=0 l’ 0

eq. D3 becomes

= lim j’ 
~ 

1 
P(l)/P1+ R + 0(P2 ) , (04)

1=0

where

j’— l
R = lim R. . = in ~ j(P(j)-P) + j ’(j ’— 1)P /2 + (1-i ’) ~ P(i )

3 
~~
‘ +

~~ 
j=i i=o

i-l
+ 

~ 
P ( i )  ,! P(i ’ )/ P •1—0 i - o

Clearly, R Is of order P. If P were large , such that the 0(P2 ) term should

be evaluated , then eq. D3 should be used. If P is sufficiently small ,

eq . 04 becomes simply
j ’  — l

t;nc = lim (j’ - ~ P ( i ) /P) (05 )

In the present study , P is 10~~ to io 8, so , as will most often be the case,

eq. D5 is entirely adequate.

___ -~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



To examine the intermediate case , we Ignore all terms 0(P2 ) and derive

a more explicit estima te of the magnitude of R. We write R = ! (R. - R. );
j =1 ~

in terms of this sum R is ,

R =  u r n  [ j (P(j)-P(j-1~~+ P(j- l) - P - (1 -P(j-l) iV )~~ P( i))  (06 )
‘~~~ j=l i o

R may be readily calculated for the important special case of exponential

relaxation of the transient , i.e., P(j) = P (1_e jhIjt). If  the relaxation is

not too fast, then we may replace the sums in eq. 06 by Integrals. (Replacing

the sum by an integral in eq. D5 in this case gives jt Tj~~1;~~
) The first two

terms of eq. D6 cancel and we are left with R P(j’)/P-l) 
f~

’
P(i)didJ ’ . or

R - ~ Jt
2p~ In general , we find R is 0(jt2O), where j~ is the character-

istic relaxation time of the transient. The exact relationship between ~
t
~1inc

and the f necessary for convergence of eq. D3 varies with the nature of the

- relaxation process.

For the definition of T
~~~c 

given by eq. 8, It follow s that (with time

measured in collisions , see (Fig. 8),

~
DT = lim j’+~ .1n(N (j

’ )/N(O)inc

But
j’—l

- lnN(j ’ )/N(O) = ~ P(j)  ;
i =0

therefore ,

r i ’ -l 1
TOT 

= lim Ij ’ - ~ P(~i)/P I = t incm c  ~ io  J 

~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~-- - •  
-
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Figure Captions

Fig. 1 Plots of experimental values of V (m) vs I (K) for each of the

five reactors. Solid curves are quadratic least square fits to

each set of data . The rn-number is attached to each set.

Fig. 2 Observed rate constants calculated from least square fit curves of

Fig. 1 plotted vs reciprocal of absolute temperature . The rn = 2.3

curve has too much curvature for the apparent activation energy to

be wel l defined.

Fig. 3 Comparison of the experimenta l P
~
(m) vs T least square fit curve

(solid) for each reactor (Fig. 1) with curves calculated on the basis

of various models: — • — , flat gaussian (a = 0.35

— — 
, linear exponential and flat gaussian (a = 0.7 L

~
Emp )

flat exponential. The linear exponential and flat gaussian

(a = 0.7 t
~
Emp) curves are essentially indistinguishable. The m = 10.5

curves are not shown to avoid cluttering of the graph ; however , the

relative positions of these curves are very similar to those for the

rn = 22.3 case. For each model , the ~E value was chosen at a particular

temperature so as to fit the m = 2.3 curve ; the values are given in

Ta ble III.

Fig. 4 Histograms of the calculated sequential reaction probability P(n) vs n,

the number of consecutive collisions. Calculat ions performed at

a) 900K and b) 1150K with: ... , gaussian (a = 0.7 
~
Emp ) ;

l inear exponential; a n d — — — , flat exponential models ,

with AE values Indicated in Table III.
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Fig. 5 a) Absolute population distributions N(E) vs E at 900K, portrayed

after various numbers of collisions (attached to each curve ) and

calculated with linear exponential or (indistinguishable) flat

gaussian (a = 0.7 timp
) models. The curves on the right represent

magnification of ordinate scale by a factor of 100. The n = 17 dis-

tribution closely approximates the steady state distribution .

b) Absolute population distributions N(E) vs E at 1150K calculated

wi th the flat gaussian (a = 0.7 L
~
Ernp) model and portrayed after various

numbers of collisions. The n = 21 distribution curve is essentially

steady state. See caption (a).

Fig. 6 Absolute population distribution at 1150K calculated with the linear

exponential model after various numbers of collisions . The n = 25

distribution approximates the steady state. See caption Fig. 5a.

Fig. 7 Relative population distribu tions N(E)/N(E)eq ~~ E(c m 1) calculated

with the linear exponential model at a) 900K and b) 1150K , portrayed

after various numbers of collisions (attached to each curve). In both

cases , the distribution of the last collision shown approximates the

steady state distribution .

Fig. 8 Graphical representation of eq. 8. Solid curve is asymptotic to

dashe d line whose slo pe i s steady state reac ti on rate P 
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